正高级人员

陈尚锋


陈尚锋:研究员,博士生导师。主要从事ENSO动力学、中高纬气候动力学、热带和中高纬系统相互作用机制方面的研究。在Nature Geoscience, Nature Communications, npj Climate and Atmospheric ScienceJournal of ClimateClimate Dynamics, GRL, ERL期刊发表论文170多篇。多篇第一和通讯作者论文入选ESI高被引论文Nature, Nature Geoscience, Nature Climate Change等期刊引用3600多次。入选中国科协青年人才托举工程、气候变化研究领域全球最具影响力1000位科学家榜单和全球前2%顶尖科学家榜单、卫星海洋环境动力学国家重点实验室青年访问海星学者、国际气象学与大气科学协会中国委员会青年工作组成员。担任《高原气象》和《气象与环境学报》青年编委及Frontiers in Environmental Science 期刊Associate Editor担任Science Bulletin, The Innovation, Nature Communications等二十多个国际学术期刊审稿人,被IOP出版社授予IOP Trusted Reviewer Status 及多次获Journal of Meteorological Research》期刊优秀审稿人


联系方式

邮件:chenshangfeng@mail.iap.ac.cn

地址:北京朝阳区北辰西路81号院

主页:https://www.researchgate.net/profile/Shangfeng-Chen


教育和工作

2006.92010.7 中山大学大气科学系,本科

2010.92015.6 中国科学院大气物理研究所,硕博 (导师:陈文研究员) 

2014.42014.6  香港中文大学,助理研究员

2015.72018.2  中国科学院大气物理研究所,博后 (导师:吴仁广研究员)

2018.62018.9  奥地利气象与地球物理中央研究院,访问学者

2019.62019.9  加拿大环境部,访问学者 (合作导师:余斌研究员)

2018.32022.1 中国科学院大气物理研究所,副研究员

2022.2至今 中国科学院大气物理研究所,研究员


获奖情况:

2024年 入选全球前2%顶尖科学家榜单

2024年 东亚夏季风过渡带近期年代际极端干热化特征及成因研究,获中国气象局气象科技成果评价良好等级,排名第四

2021年 入选气候变化研究领域全球最具影响力1000位科学家榜单

2021年 中国科学院大气物理研究所学笃风正创新贡献奖

2021年 中国科学院大气物理研究所年度先进工作者

2017年 中国气象学会涂长望青年气象科技奖

2016年 中国气象学会青年人才托举工程扶持人才

2016中国科学院大气物理研究所优秀博士学位论文

2015年 北京市优秀博士毕业生

2015年 朱李月华优秀博士生奖

2014年 中国科学院院长奖优秀奖

2014年 博士研究生国家奖学金

2014中国科学院大学三好学生标兵

2013年 博士研究生国家奖学金

2013年 中国科学院大学三好学生标兵

2011年 中国科学院研究生院三好学生

2010年 中山大学优秀本科毕业生


发表论文情况(*通讯作者):

[175] Ren, Z.-X., W. Chen, L. Wang*, S.-F. Chen*, and J.-L. Piao, 2025: Comparative analysis of east Asian summer monsoon northern boundary indices: variability, climate anomalies and driving mechanisms. Climate Dynamics, https://doi.org/10.1007/s00382-024-07526-2.

[174] Cao, X., R. Wu, P.-F. Wang, Z.-B. Wang, L. Zhou, S.-F. Chen, L. Wu, S.-Q. Zhang, X. Jiang, Z. Du, and Y. Dai, 2025: Impact of Arctic sea ice anomalies on tropical cyclogenesis over the eastern North Pacific: role of northern Atlantic sea surface temperature anomalies. Atmospheric Research, 315, 107844, https://doi.org/10.1016/j.atmosres.2024.107844.

[173] Ying, J., M. Collins, R. Chadwick, S.-F. Chen, X.-M., Hu, T. Lian, and S.-M. Long, 2024: Causes of differences in the tropical Pacific SST warming pattern projected by CMIP6 models. Advances in Atmospheric Sciences, doi:10.1007/s00376-024-4278-4.

[172] Xie, Y.-C., L.-Y. Song, M.-X. Chen, L. Han, S.-F. Chen, and C.-L. Cheng, 2024: A Segmented Classification and Regression Machine Learning Approach for Correcting Precipitation Forecast at 4–6 h Leadtimes. Journal of Meteorological Research, doi:10.1007/s13351-025-4117-2.

[171] Zheng, Y.-Q, S.-F. Chen*, W. Chen, R. Wu, Y.-L. Zhang, W. Duan, H.-J. Tan, and L.-Y. Song, 2025: Performance and bias of the Community Integrated Earth System Model in simulating the impact of the North Pacific Meridional Mode on the El Niño-Southern Oscillation. Climate Dynamics, https://doi.org/10.1007/s00382-024-07509-3.

[170] Feng, J., Y. Chen, W. Chen, S.-F. Chen, and S.-Y. Ding, 2024: Role of North Atlantic warming in the extremely hot summer of 2023 in North China. Environmental Research Letters, doi:10.1088/1748-9326/ad80ae.

[169] Cai, Q.-Y., W. Chen, S.-F. Chen, T.-J. Ma, X.-D. An, and Z.-B. Li, 2024: The strengthened linkage between ENSO and the Eurasian Pattern since the late 1980s. Journal of Climate, https://doi.org/10.1175/JCLI-D-23-0402.1.

[168] Chen, S.-F., W. Chen, R. Wu, B. Yu, Y.-Q. Zheng, Q.-Y. Cai, H.-S. Aru, and X.-Q. Lan, 2024: Improved simulation of the influence of the North Pacific Oscillation on El Niño-Southern Oscillation in CMIP6 than in CMIP5 models. Climate Dynamics, https://doi.org/10.1007/s00382-024-07423-8.

[167] Chen, S.-F., W. Chen, W. Zhou, R. Wu, S.-Y. Ding, L. Chen, Z.-Q. He, and R.-W. Yang, 2024: Interdecadal Variation in the Impact of Arctic Sea Ice on the El Niño-Southern Oscillation: The Role of Atmospheric Mean Flow. Journal of Climate, 37(21), 5483-5506, https://doi.org/10.1175/JCLI-D-23-0733.1.

[166] Chen, W., J.-L. Piao, S.-F. Chen, L. Wang, W. Zhao, Z.-K. Wang, and Q.-L. Wang, 2024: Multi-Scale Variations and Future Projections of Dry-Wet Conditions over the Monsoon Transitional Zone in East Asia: A Review. Fundamental Research, https://doi.org/10.1016/j.fmre.2024.01.023.

[165] Fang, Y.-F., S. Yang, X.-M. Hu, S.-H. Lin, J.A. Screen, and S.-F. Chen, 2024: Remote forcing for circulation pattern favorable to surface melt over the Ross ice shelf. Journal of Climate, 37(18), 4689-4702, https://doi.org/10.1175/JCLI-D-23-0120.1.

[164] Wang, Z.-B., Q.-H. Ding, R. Wu, T. Ballinger, B. Guan, D. Bozkurt, D. Nash, I. Baxter, D. Topál, Z. Li, G. Huang, W. Chen, S.-F. Chen, X. Cao, and Z. Chen, 2024: Role of atmospheric rivers in shaping long term Arctic moisture variability. Nature Communications, 15(1), 5505, https://doi.org/10.1038/s41467-024-49857-y.

[163] Yao, S.-L., R. Wu, P. -F. Wang, and S.-F. Chen, 2024: Rapid high-latitude cooling in the southeastern Pacific sector driven by North Atlantic warming during 1979-2013 in CESM1. Environmental Research Letters, 19, 064025.

[162] Chen, L.-Y., W. Chen. P. Hu, S.-F. Chen, Z.-B. Wang, X.-D. An, Y.-F. Fang, and L.-Y. Yuan, 2024: Interannual variation of the initial formation of the Siberian High: the role of the North Atlantic sea surface temperatures and the high-latitude Central Eurasia snow-cover conditions. Climate Dynamics, https://doi.org/10.1007/s00382-024-07290-3.

[161] Feng, Z., W.-Q. Xing, W.-G Wang, Z. Yu, Q. Shao, and S.-F. Chen, 2024: Assessing the spatiotemporal dynamics of water and carbon fluxes in subtropical forest of Xin'an River Basin using an improved Biome-BGC model. Journal of Hydrology, 635, 131201.

[160] Huang, R.-P., S.-F. Chen*, W. Chen, R. Wu, Z.-B. Wang, P. Hu, L. Wu, L. Wang, and J.-L. Huangfu, 2024: Impact of the winter regional Hadley circulation over western Pacific on the frequency of following summer tropical cyclone Landfalling in China. Journal of Climate, 37(13), 3521-3541.

[159] Zheng, Y.-Q.S.-F. Chen*, W. Chen, R. Wu, Z.-B. Wang, B. Yu, P. Hu, and J.-L. Piao, 2024: The role of the Aleutian Low in the relationship between spring Pacific Meridional Mode and following ENSO. Journal of Climate, 37(11), 3249-3268.

[158] Chen, S.-F., W. Chen, S.-P. Xie, B. Yu, R. Wu, Z.-B. Wang, X.-Q. Lan, and H.-F. Graf, 2024: Strengthened impact of boreal winter North Pacific Oscillation on ENSO development in warming climate. npj Climate and Atmospheric Science, 7, 69, https://doi.org/10.1038/s41612-024-00615-3.

[157] Cai, Q.-Y., W. Chen*, S.-F. Chen*, S.-P. Xie, J.-L. Piao, T.-J. Ma, and X.-Q. Lan, 2024: Recent pronounced warming on the Mongolian Plateau boosted by internal climate variability. Nature Geoscience, 17, 181-188, https://www.nature.com/articles/s41561-024-01377-6.

[156] Chen, S.-F.*, W. Chen, R. Wu, B. Yu, and J. Ying, 2024: Joint impacts of winter North Pacific Oscillation and early spring Aleutian Low intensity on the following winter ENSO. Climate Dynamics, 62 (1), 257-276.

[155] Cheng, X., S.-F. Chen*, W. Chen, R. Wu, R.-W. Yang, P. Hu, L. Chen, and H.-S. Aru, 2024: Selective influence of the Arctic Oscillation on the Indian Ocean Dipole and El Niño-Southern Oscillation. Climate Dynamics, 62, 3783-3798.

[154] Cheng, X., S.-F. Chen*, W. Chen, P. Hu, Z.-C. Du, X.-Q Lan, and Y.-Q. Zheng, 2024: How does the North Pacific Meridional Mode affect the Indian Ocean Dipole? Climate Dynamics, 62, 3123-3142.

[153] Hu, P, W. Chen, S.-F. Chen, R.-W. Yang, L. Wang, and Y.-Y. Liu, 2024: Revisiting the linkage between the Pacific-Japan pattern and Indian summer monsoon rainfall: the crucial role of the Maritime Continent. Geophysical Research Letters, 51 (3), e2023GL106982.

[152] 陈文,于甜甜,冯娟,陈尚锋,朴金玲,2024:东亚夏季风与热带海气相互作用研究进展.大气科学, 48, 160-187.

[151] Chen, L.-Y., W. Chen, P. Hu, S.-F. Chen, X.-D. An, T.-J. Ma, and Z.-K. Wang, 2024: Processes and mechanisms of the initial formation of the Siberian High during the autumn-to-winter transition. Climate Dynamics, 62, 315-329.

[150] Hu, P., W. Chen, S.-F. Chen, L. Wang, and Y.-Y. Liu, 2024: Quantitative decomposition of the interdecadal change in the correlation coefficient between the El Ni?o-Southern Oscillation and South Asian Summer Monsoon. Theoretical and Applied Climatology, 155(5), 3831-3839, https://doi.org/10.1007/s00704-024-04851-8.

[149] Chen, S.-W., S.-F. Chen*, J.-B. Jin*, Y.-Q. Zheng, W. Chen, T. Zheng, and T. Feng, 2024: The North Pacific Meridional Mode and Its Impact on ENSO in the Second Version of the Chinese Academy of Sciences Earth System Model. Journal of Geophysical Research-Atmospheres, 129(6), e2024JD041761.

[148] Wang, Z.-K., W. Chen, J.-L. Piao, S.-F. Chen, J.-S. Kim, L. Wang, and T.-T. Yu, 2023: Responses of gross primary productivity in different types of terrestrial ecosystems to interannual variation in the northern boundary of East Asian summer monsoon. Global and Planetary Change, 236, 104414, https://doi.org/10.1016/j.gloplacha.2024.104414.

[147] Aru, H.-S., W. Chen, S.-F. Chen, C.I. Garfinkel, T. Ma, Z. Dong, and P. Hu, 2023: Variation in the impact of ENSO on the western Pacific pattern influenced by ENSO amplitude in CMIP6 simulations. Journal of Geophysical Research: Atmospheres, 128 (22), e2022JD037905.

[146] Piao, J.-L., W. Chen, J. Kim, W. Zhou, S.-F. Chen, P. Hu, and X.-Q. Lan, 2023: Future changes in rainy season characteristics over East China under continuous warming. Climatic Change, 176 (9), 120.

[145] Aru, H.-S., W. Chen, S.-F. Chen, X.-D. An, T.-J. Ma, and Q.-Y. Cai, 2023: Asymmetrical modulation of the relationship between the western Pacific pattern and El Niño-Southern Oscillation by the Atlantic Multidecadal Oscillation in the boreal winter. Geophys. Res. Lett., 50(14), e2023GL103356.

[144] An, X.-D, W. Chen, W.-H. Zhang, S.-F. Chen, T.-J. Ma, F. Wang, and L.-F. Sheng, 2023: Record-breaking summer rainfall in the Asia–Pacific region attributed to the strongest Asian westerly jet related to aerosol reduction during COVID-19. Environ. Res. Lett., 18, 074036.

[143] Hu, P., W. Chen, S.-F. Chen, L. Wang, and Y.-Y. Liu, 2023: Impacts of Pacific Ocean SST on the interdecadal variations of tropical Asian summer monsoon onset: New eastward-propagating mechanisms. Climate Dynamics, 61, 4733-4748, https://doi.org/10.1007/s00382-023-06824-5.

[142] Chen, S.-F.*, W. Chen, B. Yu, L. Wu, L. Chen, Z.-B. Li, H.-S Aru, and J.-L Huangfu, 2023: Impact of the winter Arctic sea ice anomaly on the following summer tropical cyclone genesis frequency over the western North Pacific. Climate Dynamics, 61(7-8), 3971-3988, https://doi.org/10.1007/s00382-023-06789-5.

[141] Chen, S.-F., W. Chen, B. Yu, R. Wu, H.-F. Graf, and L. Chen, 2023: Enhanced impact of the Aleutian Low on increasing the Central Pacific ENSO in recent decades. npj Climate and Atmospheric Science, 6, 29, https://doi.org/10.1038/s41612-023-00350-1.221.

[140] Sun, B., L. Zhang, S.-F. Chen, and S. Outten, 2023: Editorial: Extreme Climate Events: Variability, Mechanisms, and Numerical Simulations. Frontiers in Earth Science, 11, 1159605.

[139] Piao, J.-L., W. Chen, S.-F. Chen, H.-N. Gong, Z.-B. Wang, and X.-Q. Lan, 2023: How well do CMIP6 models simulate the climatological northern boundary of the East Asian summer monsoon? Global and Planetary Change, 221, 104304.

[138] Zheng, Y.-Q., S.-F. Chen*, W. Chen, and B. Yu, 2023: A continuing increase of the impact of the spring North Pacific Meridional Mode on the following winter El Niño  and Southern Oscillation. Journal of Climate, 36(2), 585-602.

[137] Chen, S.-F.*, W. Chen, B. Yu, and R. Wu, 2023: How well can current climate models simulate the connection of the early spring Aleutian Low to the following winter ENSO? Journal of Climate, 36(2), 603-624.

[136] Cheng, X., S.-F. Chen*, W. Chen, and P. Hu, 2023: Observed impact of the Arctic Oscillation in boreal spring on the Indian Ocean Dipole in the following autumn and possible physical processes. Climate Dynamics, 61(1-2), 883-902.

[135] Wu, R., P. Dai, and S.-F. Chen, 2022: Persistence or transition of the North Atlantic Oscillation across boreal winter: Role of the North Atlantic air-sea coupling, J. Geophys. Res. Atmos., doi:10.1029/2022JD037270.

[134] Hu, P., W. Chen, L. Wang, S.-F. Chen, Y.-Y. Liu, and L.-Y. Chen, 2022: Revisiting the ENSO-monsoonal rainfall relationship:New insights based on an objective determination of the Asian summer monsoon duration. Environ. Res. Lett., 17(10), 104050, doi:10.1088/1748-9326/ac97ad.

[133] Huang, R.-P., S.-F. Chen*, W.-Y. Ding, W. Chen, and P. Hu, 2022: Fine-scale characteristics of hourly intense rainfall in pre-summer and post-summer rainy seasons in Guangdong Province over coastal South China. Theor. Appl. Climatol., 150(3-4), 1083–1095.

[132] Chen, S.-F.*, W. Chen, J.-P. Guo, L.-Y. Song, and W. Zhao, 2022: Change in the dominant atmosphere-ocean systems contributing to spring haze pollution over North China Plain around the mid-1990s. Theor. Appl. Climatol., 150(3-4), 1097–1110.

[131] Chen, L.-Y., W. Chen, P. Hu, S.-F. Chen, and X.D. An, 2022: Climatological characteristics of the East Asian summer monsoon retreat based on observational analysis. Climate Dynamics, https://doi.org/10.1007/s00382-022-06489-6.

[130] Ma, T.-J., W. Chen, S.-F. Chen, C. Garfinkel, S.-Y. Ding, L. Song, Z.-B. Li, Y.-L. Tang, J.-L. Huangfu, H.-N. Gong, and W. Zhao, 2022: Different ENSO teleconnections over East Asia in early and late winter: role of precipitation anomalies in the tropical Indian Ocean-far western Pacific. Journal of Climate, https://doi.org/10.1175/JCLI-D-21-0805.1.

[129] Hong, X.-W., R.-Y. Lu, S.-F. Chen, and S.-L. Li, 2022: The relationship between the North Atlantic Oscillation and the Silk Road pattern in summer. Journal of Climate, 35, 3091–3102. https://doi.org/10.1175/JCLI-D-21-0833.1.

[128] Yu, T.-T., J. Feng, W. Chen, and S.-F. Chen, 2022: The interdecadal change of the relationship between North Indian Ocean SST and tropical North Atlantic SST. J. Geophys. Res. Atmos., 127, e2022JD037078.

[127] Yu, T.-T., W. Chen, H.-N. Gong, J. Feng, and S.-F. Chen, 2022: Comparisons between CMIP5 and CMIP6 models in simulations of the climatology and interannual variability of the East Asian Summer Monsoon. Climate Dynamics, doi:10.1007/s00382-022-06408-9.

[126] Chen, S.-F., W.-J. Shi, Z.-B. Wang, Z.-N. Xiao, W. Chen, R. Wu, W. Xing, and W. Duan, 2022: Impact of interannual variation of the spring Somali Jet intensity on the northwest-southeast movement of the South Asian High in the following summer. Climate Dynamics, https://doi.org/10.1007/s00382-022-06399-7.

[125] Xue, X., W. Chen, and S.-F. Chen, 2022: Distinct impacts of two types of South Asian high on the connection of the summer rainfall over India and North China. Int. J. Climatol., doi:10.1002/joc.7692.

[124] Piao, J.-L., W. Chen, S.-F. Chen, and H.-N. Gong, 2022: Role of the internal atmospheric variability on the warming trends over Northeast Asia during 1970–2005. Theor. Appl. Climatol., https://doi.org/10.1007/s00704-022-04115-3.

[123] An, X.-D., W. Chen, P. Hu, S.-F. Chen, and L.-F. Sheng, 2022: Intraseasonal variation of the northeast Asian anomalous anticyclone and its impacts on PM2.5 pollution in the North China Plain in early winter. Atmos. Chem. Phys., 22, 6507–6521.

[122] Mei, S.-L, S.-F. Chen, Y. Li, and H.-S Aru, 2022: Interannual variations of rainfall in late-spring in Southwest China and associated sea surface temperature and atmospheric circulation anomalies. Atmos., 13, 735.

[121] 梅双丽,陈尚锋,2022: 华西秋雨变异特征及其成因分析,高原气象, https://kns.cnki.net/kcms/detail/62.1061.P.20220613.1743.004.html.

[120] Cen, S.-X., W. Chen, S.-F. Chen, L. Wang, J. Huangfu, and Y. Liu, 2022: Weakened influence of ENSO on the zonal shift of the South Asian High after the early 1980s. Int. J. Climatol., https://doi.org/10.1002/joc.7666.

[119] Cai, Q.-Y., W. Chen, S.-F. Chen, T.-J. Ma, and C. Garfinkel, 2022: Influence of the Quasi-Biennial Oscillation on the spatial structure of winter-time Arctic Oscillation. J. Geophys. Res. Atmos., 127, e2021JD035564.

[118] Hu, P., W. Chen, Z.-B. Li, S.-F. Chen, L. Wang, and Y.-Y. Liu, 2022: Close linkage of the South China Sea summer monsoon onset and extreme rainfall in May over Southeast Asia: role of the synoptic-scale systems. Journal of Climate, https://doi.org/10.1175/JCLI-D-21-0740.1.

[117] Yu, T.-T., J. Feng, W. Chen, K. Hu, and S.-F. Chen, 2022: Enhanced tropospheric biennial oscillation of the East Asian summer monsoon since the late-1970s. Journal of Climate, 35, 1613–1628.

[116] Song, L.-Y., S.-F. Chen*, W. Chen, J.-P. Guo, C.-L. Cheng, and Y. Wang, 2022: Distinct evolutions of haze pollution from winter to following spring over the North China Plain: Role of the North Atlantic sea surface temperature anomalies. Atmos. Chem. Phys., 22, 1669–1688.

[115] Chen, S.-F.*, W. Chen, J. Ying, Y.-Q. Zheng, and X.-Q. Lan, 2022: Interdecadal modulation of the Pacific Decadal Oscillation on the relationship between spring Arctic Oscillation and the following winter ENSO. Front. Earth Sci., doi:10.3389/feart.2021.810285.

[114] Chen, S.-F., and W. Chen, 2022: Distinctive impact of spring AO on the succedent winter El Niño event: sensitivity to AO’s North Pacific component, Climate Dynamics, 58, 235–255. https://doi.org/10.1007/s00382-021-05898-3.

[113] Hu, P., W. Chen, S.-F. Chen, Y.-Y. Liu, L. Wang, and R.-P. Huang, 2022: The Leading Mode and Factors for Coherent Variations among the Subsystems of Tropical Asian Summer Monsoon Onset. Journal of Climate, 35, 1597–1612.

[112] Zhao, W., S.-F. Chen*, H. Zhang, J. Wang, W. Chen, R. Wu, W. Xing, Z. Wang, P. Hu, J. Piao, and T. Ma, 2022: Distinct impacts of ENSO on haze pollution in Beijing-Tianjin-Hebei region between early and late winters, Journal of Climate, 35, 687–704. https://doi.org/10.1175/JCLI-D-21-0459.

[111] Chen, S.-F., W. Chen, B. Yu, and Z.-B. Li, 2022: Impact of internal climate variability on the relationship between spring northern tropical Atlantic SST anomalies and succedent winter ENSO: the role of the North Pacific Oscillation. Journal of Climate, 35, 537–559.https://doi.org/10.1175/JCLI-D-21-0505.1.

[110] Hu, P., W. Chen, S.-F. Chen, L. Wang, and Y. Liu, 2022: The weakening relationship between ENSO and South China Sea summer monsoon onset in recent decade. Adv. Atmos. Sci., 39, 443–455.

[109] Aru, H.-S., S.-F. Chen, and W. Chen, 2022: Change in the variability in the Western Pacific pattern during boreal winter: Roles of tropical Pacific sea surface temperature anomalies and North Pacific storm track activity. Climate Dynamics, 58, 2451–2468.

[108] Piao, J.-L., W. Chen, S.-F. Chen, H.-N. Gong, and L. Wang, 2021: Mean states and future projections of precipitation over the monsoon transitional zone in China in CMIP5 and CMIP6 models. Climatic Change, 169, 1–12.

[107] Song, L.-Y., S.-F. Chen*, Y. Li, D. Qi, J.-K. Wu, M.-X. Chen, and W.-H. Cao, 2021: The Quantile-Matching approach to improving radar quantitative precipitation estimation in South China. Remote Sensing, 13, 4956.

[106] Huang, R.-P., S.-F. Chen*, W. Chen, B. Yu, P. Hu, J. Ying, and Q. Wu, 2021: Northern poleward edge of regional Hadley cell over western Pacific during boreal winter: year-to-year variability, influence factors and associated winter climate anomalies. Climate Dynamics, 56, 3643–3664.

[105] Zheng, Y.-Q., W. Chen, and S.-F. Chen*, 2021: Intermodel spread in the impact of the springtime Pacific Meridional Mode on following-winter ENSO tied to simulation of the ITCZ in CMIP5/CMIP6. Geophys. Res. Lett., 48, e2021GL093945.

[104] Aru, H.-S., W. Chen, and S.-F. Chen*, 2021: Is there any improvement in simulation of wintertime Western Pacific teleconnection pattern and associated climate anomalies in CMIP6 comparing with CMIP5 models? Journal of Climate, 34, 8841–8861.

[103] Piao, J., W. Chen, L. Wang, and S.-F. Chen, 2021: Future projections of precipitation, surface temperatures and drought events over the monsoon transitional zone in China from bias-corrected CMIP6 models, Int. J. Climatol., 42, 1203–1219.

[102] Song, L.-Y., S.-F. Chen*, W. Chen, W.-S. Duan, and Y. Li, 2021: Interdecadal change in the relationship between boreal winter North Pacific Oscillation and Eastern Australian rainfall in the following autumn, Climate Dynamics, 57, 3265–3283. https://doi.org/10.1007/s00382-021-05864-z.

[101] Chen, S.-F.*, R. Wu, and W. Chen, 2021: Influence of North Atlantic sea surface temperature anomalies on springtime surface air temperature variation over Eurasia in CMIP5 models, Climate Dynamics, 57, 2669–2686.

[100] Li, Z.-B., W. Chen, S.-F. Chen, Y. Sun, and D. Qian, 2021: Uncertainty of Central China Summer Precipitation and Related Natural Internal Variability Under Global Warming of 1oC to 3oC, Int. J. Climatol., 41, 6640–6653.

[99] Ying, J., T. Lian, P. Huang, G. Huang, D.-K. Chen, and S.-F. Chen, 2021: Discrepant effects of atmospheric adjustments in shaping the spatial pattern of SST anomalies between extreme and moderate El Niños. Journal of Climate, 34,  5229–5242.

[98] Zhao, W., W. Chen, S.-F. Chen*, H.-N. Gong, and T.-J. Ma, 2021: Roles of anthropogenic forcings in the observed trend of decreasing late-summer precipitation over the East Asian transitional climate zone, Sci. Rep., 11, 4935.

[97] Zheng, Y.-Q., W. Chen, S.-F. Chen*, S.-L. Yao, and C.-L. Cheng, 2021: Asymmetric impact of the boreal spring Pacific Meridional Mode on the following winter El Niño-Southern Oscillation. Int. J. Climatol., 41, 3523–3538.

[96] Aru, H.-S., S.-F. Chen, and W. Chen, 2021: Comparisons of the different definitions of the western Pacific pattern and associated winter climate anomalies in Eurasia and North America. Int. J. Climatol., 41, 2840–2859.

[95] Yu, B, G.-L. Li, H. Lin, and S.-F. Chen, 2021: Projected trends of wintertime North American surface mean and extreme temperatures over the next half century in two generations of Canadian Earth System Models, Atmosphere-Ocean, 59, 53–75.

[94] Chen, S.-F.*, W. Chen, R. Wu, B. Yu, and L.-Y. Song, 2021: Performance of the IPCC AR6 models in simulating the relation of the western North Pacific subtropical high to the spring northern tropical Atlantic SST, Int. J. Climatol., 41, 2189–2208.

[93] Chen, S.-F.*, R. Wu, W. Chen, L.-Y. Song, W. Cheng, and W.-J. Shi, 2021: Weakened impact of autumn Arctic sea ice concentration change on the subsequent winter Siberian High variation around the late-1990s. Int. J. Climatol., 41, E2700–E2717.

[92] Chen, S.-F.*, B. Yu, R. Wu, W. Chen, and L.-Y. Song, 2021: The dominant North Pacific atmospheric circulation patterns and their relations to Pacific SSTs: Historical simulations and future projections in the IPCC AR6 models. Climate Dynamics, 56, 701–725.

[91] Zheng, Y.-Q., S.-F. Chen*, W. Chen, and B. Yu,2021: Diverse influences of spring Arctic Oscillation on the following winter El Niño-Southern Oscillation in CMIP5 models. Climate Dynamics, 56, 275–297.

[90] Xue, X., W. Chen, S.-F. Chen, S. Sun, and S. Hou, 2021: Distinct impacts of two types of South Asian highs on East Asian summer rainfall. Int. J. Climatol., 41, E2718–E2740.

[89] Piao, J.-L., W. Chen, and S.-F. Chen, 2021: Sources of the internal variability-generated uncertainties in the projection of Northeast Asian summer precipitation. Climate Dynamics, 56, 1783–1797.

[88] Hu, P., W. Chen, S.-F. Chen, Y. Liu, L. Wang, and R. Huang, 2021: Impact of the March Arctic Oscillation on the South China Sea Summer Monsoon Onset. Int. J. Climatol., 41, E3239–E3248.

[87] Piao, J.-L., W. Chen, and S.-F. Chen, 2020: Water vapor transport changes associated with the interdecadal decrease in the summer rainfall over Northeast Asia around the late-1990s. Int. J. Climatol., 41, E1469–E1482.

[86] Chen, S.-F.*, and B. Yu, 2020: The seasonal footprinting mechanism in large ensemble simulations of the second generation Canadian Earth System Model: Uncertainty due to internal climate Variability. Climate Dynamics, 55, 2523–2541.

[85] Wang, S., W. Chen, S.-F. Chen, and S.Y. Ding, 2020: Interdecadal change in the North Atlantic storm track during boreal summer around the mid-2000s: role of the atmospheric internal processes. Climate Dynamics, 55, 1929–1944.

[84] Chen, S.-F.*, and B. Yu,2020: Projection of winter NPO-following winter ENSO connection in a warming climate: Uncertainty due to internal climate variability. Climatic Change, 162:723–740. doi:10.1007/s10584-020-02778-3.

[83] Chen, S.-F., R. Wu, W. Chen, and K. Li , 2020: Why does a colder (warmer) winter tend to be followed by a warmer (cooler) summer over northeast Eurasia? Journal of Climate, 33, 7255–7274.

[82] Zhao, W., N.-F. Zhou, and S.-F. Chen*, 2020: The record-breaking high temperature over Europe in June of 2019. Atmosphere, 11, 524, doi:10.3390/atmos11050524

[81] Yu, B., G.-L. Li, S.-F. Chen, and H. Lin, 2020: The role of internal variability in climate change projections of North American surface air temperature and temperature extremes in CanESM2 large ensemble simulations. Climate Dynamics, 55, 869–885.

[80] Chen, S.-F.*, W. Chen, R. Wu, and L.-Y. Song, 2020: Impacts of the Atlantic Multidecadal Oscillation on the Relationship of the Spring Arctic Oscillation and the Following East Asian Summer Monsoon. Journal of Climate, 33, 6651–6672.

[79] Chen, S.-F.*, R. Wu, W. Chen, S.-L. Yao, and B. Yu, 2020: Coherent interannual variations of springtime surface temperature and temperature extremes between central-northern Europe and  Northeast  Asia.  J. Geophys. Res. Atmos., 11, e2019JD032226.

[78] Chen, S.-F.*, R. Wu, W. Chen, K.-M. Hu, and B. Yu, 2020: Structure and dynamics of a springtime atmospheric wave train over the North Atlantic and Eurasia. Climate Dynamics, 54, 5111–5126.

[77] Piao, J.-L., W. Chen, S.-F. Chen, H.-N. Gong, X.-L. Chen, and B. Liu, 2020: The intensified impact of El Niño on late-summer precipitation over East Asia since the early 1990s. Climate Dynamics, 54, 4793–4809.

[76] Wu, R., and S.-F. Chen*, 2020: What leads to persisting surface air temperature anomalies from winter to following spring over the mid-high latitude Eurasia?. Journal of Climate, 33, 5861–5883.

[75] Chen, S.-F.*, J.-P. Guo, L.-Y. Song, J.B. Cohen, and Y. Wang, 2020: Intra-seasonal differences in the  atmospheric systems contributing to interannual variations of autumn haze pollution in the North China Plain. Theor. Appl. Climatol., 141, 389–403.

[74] Hu, P., W. Chen, S.-F. Chen, Y.-Y. Liu, L. Wang, and R.-P. Huang, 2020: Impact of the September Silk Road Pattern on the South China Sea Summer Monsoon Withdrawal. Int. J. Climatol., https://doi.org/10.1002/joc.6585.

[73] Cen, S.-X., W. Chen, S.-F. Chen, Y.-Y. Liu, and T.-J. Ma, 2020: Potential impact of atmospheric heating over  East Europe on the zonal shift in the South Asian high: the role of the Silk Road teleconnection.  Sci. Rep.,  10, 6543, https://doi.org/10.1038/s41598-020-63364-2.

[72] Hu, P., W. Chen, S.-F. Chen*, R.-P., Huang, and Y.-Y. Liu, 2020: Extremely early summer monsoon  onset in the South China Sea in 2019 following an El Niño event.  Mon. Wea. Rev., 148, 1877–1890.

[71] Piao, J.-L., W. Chen, S.-F. Chen, H.-N. Gong, and Q. Zhang, 2020: Summer water vapor sources in  Northeast  Asia and East Siberia revealed by a moisture-tracing atmospheric model. Journal of Climate, 33, 3883–3899.

[70] Chen, S.-F.*, W. Chen, R. Wu, B. Yu, and H.-F. Graf, 2020: Potential impact of preceding Aleutian Low variation on the El Niño-Southern Oscillation during the following winter.  Journal of Climate, 33, 3061–3077.

[69] Chen, S.-F.*, R. Wu, and W. Chen, 2020: Strengthened connection between springtime North Atlantic Oscillation and North Atlantic tripole SST pattern since the late-1980s.  Journal of Climate,  35(5), 2007–2022.

[68] Zhao, W., W. Chen, S.-F. Chen*, D. Nath, and L. Wang, 2020: Interdecadal change in the impact of North Atlantic SST on August rainfall over the monsoon transitional belt in China around the late-1990s. Theor. Appl. Climatol., 140, 503–516.

[67] Chen, S.-F.*, R. Wu, W. Chen, and B. Yu,2020: Influence of winter Arctic sea ice concentration change on the El Niño-Southern Oscillation in the following winter. Climate Dynamics, 54(1), 741–757.

[66] Chen, S.-F.*, R. Wu, W. Chen, and B. Yu,2020: Recent weakening of the linkage between the spring Arctic Oscillation and the following winter El Niño-Southern Oscillation. Climate Dynamics, 54(1), 53–67.

[65] Hu, P., W. Chen, S.-F. Chen, and R.-P. Huang, 2020: Statistical analysis of the impacts of intraseasonal oscillations on the south China sea summer monsoon withdrawal. Int. J. Climatol., 40, 1919–1927.

[64] Wang, S., W. Chen, S.-F. Chen, D. Nath, and L. Wang, 2020: Anomalous winter moisture transport associated with the recent surface warming over the Barents-Kara Seas region since the mid-2000s.  Int. J. Climatol., 40, 2497–2505.

[63] Chen, S.-F.*, R. Wu, W. Chen, and L.-Y. Song, 2020: Projected changes in mid-high latitude  Eurasian   climate during boreal spring in a 1.5oC and 2oC warmer world. Int. J. Climatol., 40, 1851–1863.

[62] Hu, P., W. Chen, S.-F. Chen, Y.-Y. Liu, and R.-P. Huang, 2020: Relationship between the South China Sea summer monsoon withdrawal and September-October rainfall over southern China.  Climate Dynamics, 54, 713–726.

[61] Zhao, W., W. Chen, S.-F. Chen*, S.Yao, and D. Nath, 2020: Combined impact of tropical central‐eastern Pacific and North Atlantic sea surface temperature on precipitation variation in monsoon transitional zone over China during August–September. Int. J. Climatol., 40, 1316–1327. 

[60] Chen, S.-F.*, J.-P. Guo, L.-Y. Song, J. Cohen, and Y. Wang, 2020: Temporal disparity of the atmospheric systems contributing to interannual variation of wintertime haze pollution in the North China Plain. Int. J. Climatol., 40, 128–144.

[59] 郑玉琼,陈文,陈尚锋* 2020: CMIP5模式对春季北极涛动影响后期冬季ENSO不对称性的模拟能力分析, 大气科学, 44, 435–454.

[58] Chen, S.-F.*, R. Wu, and W. Chen, 2019: Enhanced impact of Arctic sea ice change during boreal autumn on the following spring Arctic Oscillation since the mid-1990s. Climate Dynamics, 53, 5607–5621.

[57] Chen, S.-F.*, R. Wu, and W. Chen, 2019: Projections of climate changes over mid-high latitudes of  Eurasia during boreal spring: uncertainty due to internal variability. Climate Dynamics, 53, 6309–6327.

[56] Chen, S.-F., R. Wu, L.-Y. Song, and W. Chen, 2019: Present-day status and  future projection of  spring Eurasian  surface air temperature  in CMIP5 model simulations.  Climate Dynamics,  52, 5431–5449.

[55] Chen, S.-F.*, R. Wu, W. Chen, and L.-Y. Song, 2019: Performance of the CMIP5 models in simulating the Arctic Oscillation during boreal spring. Climate Dynamics, 53, 2083–2101.

[54] Chen, S.-F., R. Wu, L.-Y. Song, and W. Chen, 2019: Interannual variability of surface air temperature over mid-high latitudes of Eurasia during boreal autumn.  Climate Dynamics,  53, 1805–1821.

[53] Huang, R.-P., S.-F. Chen*, W. Chen, P. Hu., and B. Yu, 2019: Recent strengthening of the regional Hadley circulation over the western Pacific during boreal spring. Adv. Atmos. Sci., 36, 1251–1264.

[52] Chen, S.-F.*,  and L.-Y. Song, 2019: Recent strengthened impact of the winter Arctic Oscillation on the southeast Asian surface air temperature variation. Atmosphere, 10, 164.

[51] Chen, S.-F.*, and L.-Y. Song, 2019: The leading interannual variability modes of winter surface air temperature over Southeast Asia. Climate Dynamics, 52, 4715–4734.

[50] Chen, S.-F., J.-P. Guo, L.-Y. Song, J. Li, L. Liu, and J. Cohen, 2019: Interannual variation of the spring haze pollution over the North China Plain: Roles of atmospheric circulation and sea surface temperature. Int. J. Climatol., 39, 783–798.

[49] Zhao, W., W. Chen, S.-F. Chen*, S. Yao, and D. Nath, 2019: Interannual variations of precipitation over the monsoon transitional zone in China during August-September:  Role of sea surface  temperature  anomalies  over the tropical Pacific and North Atlantic. Atmos. Sci. Lett., 20, E872.

[48] Zhao, W., S.-F. Chen*, W. Chen, S. Yao, D. Nath, and B. Yu, 2019: Interannual variations of the rainy season withdrawal of the monsoon transitional zone in China. Climate Dynamics, 53, 2031–2046, https://doi.org/10.1007/s00382-019-04762-9.

[47] Wang, L. Y. Liu, Y. Zhang, W. Chen, and S.-F. Chen, 2019: Time-varying structure of the wintertime  Eurasian  pattern: Role  of the North Atlantic sea surface temperature and atmospheric  mean flow,  Climate Dynamics, 52, 2467–2479.

[46] Hu, P., W. Chen, and S.-F. Chen,  2019: Interdecadal change in the South China Sea summer monsoon withdrawal around the mid-2000s. Climate Dynamics, 52, 6053–6064.

[45] Hu, P., W. Chen, S.-F. Chen, and R.-P. Huang, 2019: Interannual variability and triggers of the South China Sea summer monsoon withdrawal. Climate Dynamics, 53, 4355–4372.

[44] Chen, S.-F.*, L.-Y. Song, and W. Chen, 2019: Interdecadal Modulation of AMO on the Winter North Pacific Oscillation−Following Winter ENSO Relationship. Adv. Atmos. Sci., 36, 1393–1403.

[43] Chen, S.-F.*, B. Yu, W. Chen, and R. Wu, 2018: A review of atmosphere-ocean forcings outside  the tropical Pacific on the  El Niño-Southern Oscillation occurrence. Atmosphere, 9, 439.

[42] Chen, S.-F., R. Wu, L.-Y. Song, and W. Chen, 2018: Combined influence of the Arctic Oscillation and the Scandinavia pattern on spring surface air temperature variations over Eurasia. J. Geophys. Res. Atmos., 123, 9410–9429.

[41] Chen, S.-F., W. Chen, and B. Yu, 2018: Modulation of the relationship between spring AO and the subsequent winter ENSO by the preceding November AO, Sci. Rep., 8, 6943. doi: 10.1038/s41598-018-25303-0.

[40] Chen, S.-F., R. Wu, W. Chen, and S. Yao, 2018: Enhanced linkage between Eurasian winter and spring dominant modes of atmospheric interannual variability since the early-1990s.  Journal of Climate,  31, 3575–3595.

[39] Chen, S.-F.*, R. Wu, and W. Chen, 2018: A strengthened impact of November Arctic oscillation on subsequent tropical Pacific sea surface temperature variation since the late-1970s. Climate Dynamics, 51, 511–529.

[38] Chen, S.-F.*, and R. Wu, 2018: Impacts of winter NPO on subsequent winter ENSO: sensitivity to the definition of NPO index. Climate Dynamics, 50, 375–389.

[37] Chen, S.-F., and R. Wu, 2018: Impacts of early autumn Arctic sea ice concentration on subsequent spring Eurasian surface air temperature variations. Climate Dynamics, 51, 2523–2542.

[36] Huang, R.-P., S.-F. Chen*, W. Chen, and P. Hu, 2018: Has the Regional Hadley circulation over western Pacific during boreal winter been strengthening in recent decades? Atmos. Ocean. Sci. Lett., 11, 454–463.

[35] Chen, S.-F., R. Wu, and W. Chen, 2018: Modulation of spring northern tropical Atlantic sea surface temperature on the ENSO-East Asian summer monsoon connection.   Int. J. Climatol.,38, 5020–5029.

[34] Chen, S.-F.*, and L.-Y. Song, 2018: Definition sensitivity: Impact of winter North Pacific Oscillation on the surface air temperature over Eurasia and North America. Adv. Atmos. Sci., 35, 702–712.

[33] Huang, R.-P., S.-F. Chen*, W. Chen, and P. Hu, 2018: Interannual variability of regional Hadley circulation intensity over western Pacific during boreal winter and its climatic impact over Asia-Australia region. J. Geophys. Res. Atmos., 123, 344–366.

[32] Piao, J., W. Chen, S.-F. Chen, and K. Wei, 2018: Intensified Impact of North Atlantic Oscillation in May on subsequent July Asian Inland Plateau precipitation since the late 1970s. Int. J. Climatol., 38, 2605–2612.

[31] Xue, X., W. Chen, S.-F. Chen, and J. Feng, 2018: PDO modulation of the ENSO impact on the summer South Asian high. Climate Dynamics, 50, 1393–1411.

[30] Wang, Z., R. Wu, S.-F. Chen, G. Huang, G. Liu, and L. Zhu, 2018: Influence of western Tibetan Plateau summer snow cover on East Asian summer rainfall, J. Geophys. Res. Atmos., 123, 2371–2386.

[29] 陈文,丁硕毅,冯娟,陈尚锋,薛旭,周群 2018:不同类型ENSO对东亚季风的影响和机理研究进展,大气科学,42, 640–655.

[28] Chen, S.-F., and R. Wu, 2017: Interdecadal changes in the relationship between interannual variations of spring north Atlantic SST and Eurasian surface air temperature. Journal of Climate, 30, 3771–3787.

[27] Chen, S.-F., W. Chen, and B. Yu, 2017: The influence of boreal spring Arctic Oscillation on the subsequent winter ENSO in CMIP5 models. Climate Dynamics, 48, 2949–2965.

[26] Xue, X., W. Chen, and S.-F. Chen,  2017: The climatology and interannual variability of the South Asia High and its relationship with ENSO in CMIP5 models. Climate Dynamics, 48, 3507–3528.

[25] Chen, S.-F.*, and R. Wu, 2017: An enhanced influence of sea surface temperature in the tropical northern Atlantic on the following winter ENSO since the early 1980s. Atmos. Ocean. Sci. Lett., 10, 175–182.

[24] Song, L.-Y., S.-F. Chen*, W. Chen, and X. Chen, 2017: Distinct impacts of two types of La Niña events on Australian summer rainfall. Int. J. Climatol., 37, 2532–2544.

[23] Zhong, E.-F., Q. Li, S. Sun, S.-F. Chen, and W. Chen, 2017: Analysis of euphotic depth in snow with SNICAR transfer scheme, Atmos. Sci. Lett., 18, 484–490.

[22] Zhong, E.-F., Q. Li, S. Sun, W. Chen, S.-F. Chen, and D. Nath, 2017: Improvement of a snow albedo parameterization in the Snow–Atmosphere–Soil Transfer model: evaluation of impacts of aerosol  on seasonal snow cover. Adv. Atmos. Sci., 34, 1333–1345.

[21] Cao, X., R. Wu, and S.-F. Chen,  2017: Contrast of 10–20-day and 30–60-day intraseasonal SST propagation  during summer and winter over the South China Sea and western North Pacific. Climate Dynamics, 48, 1233–1248.

[20] Chen, S.-F.*, R. Wu, W. Chen, B. Yu, and X. Cao, 2016: Genesis of westerly wind bursts over the equatorial western Pacific during the onset of the strong 2015-16 El Niño. Atmos. Sci. Lett., 17, 384–391.

[19] Chen, S.-F., R. Wu, and Y. Liu, 2016: Dominant modes of interannual variability in Eurasian surface air temperature during boreal spring. Journal of Climate, 29, 1109–1125.

[18] Cao, X., S.-F. Chen*, G.-H. Chen, and R. Wu, 2016: Intensified impact of northern tropical Atlantic SST on tropical cyclogenesis frequency over the western north pacific after the Late 1980s. Adv. Atmos. Sci., 33, 919–930.

[17] Wu, R., and S.-F. Chen,  2016: Regional change in snow water equivalent–surface air temperature  relationship over Eurasia during boreal spring. Climate Dynamics, 47, 2425–2442.

[16] 陈尚锋, 陈文 2016: 北极涛动对ENSO影响的研究进展, 气象科技进展, 6, 6–13.

[15] Wu, R., X. Cao, and S.-F. Chen,  2015: Covariations of SST and surface heat flux on 10–20day and 30–60day time scales over the South China Sea and western North Pacific. J. Geophys. Res. Atmos., 120, 486–499.

[14] Xue, X., W. Chen, S.-F. Chen, and D. Zhou, 2015: Modulation of the connection between boreal winter ENSO and the South Asian high in the following summer by the stratospheric quasi-biennial oscillation. J. Geophys. Res. Atmos., 120, 7393–7411.

[13] Chen, S.-F., R. Wu, W. Chen, and B. Yu, 2015: Influence of the November Arctic Oscillation on the subsequent tropical Pacific sea surface temperature. Int. J. Climatol., 35, 4307–4317.

[12] Chen, S.-F., R. Wu, and W. Chen, 2015: The changing relationship between interannual variations of the North Atlantic Oscillation and northern tropical Atlantic SST. Journal of Climate, 28, 485–504.

[11] Chen, S.-F., W. Chen, and R. Wu, 2015: An interdecadal change in the relationship between boreal spring Arctic Oscillation and the East Asian Summer Monsoon around the early 1970s. Journal of Climate, 28, 1527–1542.

[10] Cao, X., S.-F. Chen*, G.-H. Chen, W. Chen, and R. Wu, 2015:: On the weakened relationship between spring Arctic Oscillation and following summer tropical cyclone frequency over the western north Pacific: A comparison between 1968–1986 and 1989–2007. Adv. Atmos. Sci., 32, 1319–1328.

[9] Chen, S.-F., B. Yu, and W. Chen, 2015: An interdecadal change in the influence of the spring Arctic Oscillation on the subsequent ENSO around the early 1970s. Climate Dynamics, 44, 1109–1126.

[8] Mei, S.-.L, W. Chen, and S.-F. Chen,  2015: On the relationship between the northern limit of southerly wind and summer precipitation over east China. Atmos. Ocean. Sci. Lett., 8, 52–56.

[7] Chen, S.-F.*, B. Yu, and W. Chen, 2014: An analysis on the physical process of the influence of AO on ENSO. Climate Dynamics, 42, 973–989.

[6] Chen, S.-F., K. Wei, W. Chen, and L.-Y. Song, 2014: Regional changes in the annual mean Hadley circulation in recent decades. J. Geophys. Res. Atmos., 119, 7815–7832.

[5] Chen, S.-F., W. Chen, and B. Yu 2014: Asymmetric influence of boreal spring Arctic Oscillation on subsequent ENSO. J. Geophys. Res. Atmos., 119:135–150.

[4] Chen, S.-F., X. Chen, K. Wei, W. Chen, and T. Zhou, 2014: Vertical tilt structure of East Asian trough and its interannual variation mechanism in boreal winter. Theor. Appl. Climatol., 115, 667–683.

[3] Chen, S.-F., W. Chen, B. Yu, and H. Graf, 2013: Modulation of the seasonal footprinting mechanism by the boreal spring Arctic Oscillation, Geophys. Res. Lett., 40, 6384–6389.

[2] Chen, S.-F.*, W. Chen, and K. Wei, 2013: Recent trends in winter temperature extremes in eastern China and their relationship with the Arctic Oscillation and ENSO. Adv. Atmos. Sci., 30, 1712–1724.

[1] 陈尚锋,温之平,陈文,2011:南海地区大气30-60天低频振荡及其对南海夏季风的可能影响,大气科学, 35, 982–992.


承担科研项目情况:

国家自然科学基金面上项目 (批准号:42475042),两种类型北太平洋经向模生成和演变机理的比较研究,48万,2025.01-2028.12负责人,在研

国家自然科学基金面上项目 (批准号:42175039)北极海冰异常对两类厄尔尼诺事件的影响及其机理研究,57万,2022.01-2025.12负责人,在研

国家自然科学基金面上项目 (批准号:41775080),海洋和陆面状况对中南半岛地区春夏季降水年际变异的影响和过程,68万,2018.01-2021.12,主要参与人,已结题

国家自然科学基金青年科学基金项目 (批准号:41605050)北极涛动对厄尔尼诺-南方涛动影响的年代际变化及其机理研究,24万,2017.01-2019.12负责人,已结题

国家自然科学基金国际合作与交流项目 (批准号:41661144016),东南亚季风区气候的年代际变化和近期预估,252万,2016.09-2019.08,主要参与人,已结题

国家自然科学基金重点项目 (批准号:41530425),海陆气过程在亚洲春季气候变异和冬夏气候异常关联中的作用,357万,2016.01-2020.12主要参与人,已结题

中国科学院大气物理研究所十四五规划青年项目502024.09-2025.09负责人,在研

中国科协青年人才托举工程项目 (2016-2018年度)45万,2016.01-2019.12负责人,已结题

中国博士后科学基金特别资助项目,15万,2017.01-2018.02负责人,已结题

中国博士后科学基金面上资助项目5万,2017.01-2018.02负责人,已结题


指导学生情况:

已毕业学生:

黄汝萍 (2018年,硕士,工作单位:中国气象局广州热带海洋气象研究所,副研究员,获国家自然科学基金青年科学基金项目资助)

赵威 (2019年,博士,工作单位:国家气象中心,高级工程师)

林明宇 (2020年,硕士,工作单位:中国气象局公共气象服务中心,科员)

阿如哈斯 (2022年,博士,工作单位:德国马克思普朗克气象研究所,博士后研究员,获博士研究生国家奖学金,获中德博士后奖学金项目资助)

郑玉琼 (2022年,博士,工作单位:云南大学地球科学学院,讲师,获国家自然科学基金青年科学基金项目资助)

在读学生:

程欣 (硕博连读,获博士研究生国家奖学金)巨晓明 (硕博连读); 陈劭雯 (硕博连读); 任子璇 (硕博连读); 

王乐莹 (直博); 陈彦 (直博); 徐玮倩 (直博)胡哲涵 (直博); 朱莹 (直博); 王周骥 (直博); 詹欣茹 (联合培养)

版权所有 © 中国科学院大气物理研究所季风系统研究中心,中国科学院大气物理研究所

京ICP备14024088号

地址:北京市朝阳区德胜门外祁家豁子华严里40号

联系电话:010-62659180